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In this Letter, we present the first experimental demonstration of the temporal refraction of acoustic
waves in a phononic lattice. A step change in grounding stiffness results in a discontinuous change in group
velocity across a so-called temporal boundary. This leads to frequency translation of incident signals, which
maintain constant wavelength. We use the system to construct phononic analogs of the classical Snell and
Fresnel relationships for temporal boundaries, providing evidence of temporal refraction. Last, we propose
the ability to design systems to achieve tunable slow sound.
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Introduction—Propagation of waves in time-varying
media has received much attention across a variety of
domains. Previous work in both electromagnetic and
mechanical systems has focused on periodic variations in
medium properties, enabling phenomena including para-
metric amplification [1–3], nonreciprocal propagation [4–7],
or topological effects [8–10]. Recent focus has shifted
to the interaction of propagating waves with nonperiodic
temporal variations, especially boundaries or discontinuities
of the properties of a medium, specifically the refractive
index, in time [11–13]. Since temporal boundaries were
introduced [14], they have been studied as a temporal analog
to spatial refraction [15–22] and extended to general space-
time variations [23–26].
Various functionalities enabled by rapid time-variation

have been proposed for electromagnetic waves, such as
antireflection temporal coatings [27], thin absorbers [28],
or time mirrors [29,30]. Natural extensions of temporal
boundaries have been explored, including temporal slabs
and layered media [31–34] and boundaries with finite rise
times [35]. Temporal boundaries can enable broadband,
linear frequency conversion [12,13] without the typical
considerations of conventional nonlinear frequency con-
version, such as phase matching [36–39]. Experimentally,
flash ionization [40,41], rapidly time-varying optical meta-
surfaces [12], ultrafast pumping of metal-semiconductor
waveguides [42], and electrostriction-controlled water
waves [43] have been shown to achieve frequency con-
version using temporal boundaries. Crucially, achieving
temporal boundaries typically requires either the uniform
change of an external field [40,41,43] or precise coinci-
dence of pumping and input signals [12].
In this Letter, we present the first experimental demon-

stration of the refraction of acoustic waves across a
temporal boundary in elastic properties. We employ a
one-dimensional phononic lattice composed of repelling

magnets (serving as discrete masses and springs) controlled
by electromagnetic coils (serving as grounding stiffness
elements), see Fig. 1(a). The temporal boundary, depicted
in Fig. 1(b), is realized by a rapid, steplike change in
grounding stiffness, as shown in Fig. 1(c). The measured
conversion of frequency, conservation of wavelength, and
transmission and reflection of signals provide evidence
of temporal refraction in acoustic and elastic systems and
support the proposed realization of tunable slow sound.
This novel phononic demonstration bolsters the potential
for the implementation of temporal refraction in similar
acoustic and elastic devices and, moreover, highlights
the versatility of discrete systems for implementing the
dynamic modulation necessary to realize temporal boun-
daries in any domain.

FIG. 1. (a) Photo of experimental lattice, driving, and ground-
ing stiffness coils labeled. (b) Schematic of lattice before (below)
step-up temporal boundary (t < τ) with depiction of incident
wave, and after (above) the temporal boundary (t > τ) with
transmitted and reflected waves observed. (c) Step-up grounding
stiffness, from kgðtÞ ¼ 0 to kgðtÞ ¼ Amod at temporal boundary τ.
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Lattice model—The lattice depicted in Fig. 1(a) is
modeled as a discrete mass-spring chain, similar to prior
work [5,44]. The equation of motion for the nth mass (ring
magnet) with displacement un (m) is written

m
d2un
dt2

þc
dun
dt

þkg;nðtÞunþklinΔu¼Fdr;nðtÞ; ð1Þ

for n ¼ 1 to 12, with fixed boundary conditions u1ðtÞ ¼
u12ðtÞ ¼ 0 and where Δu ¼ ð2un − un−1 − unþ1Þ. All ring
magnets have mass m ¼ 9.8 g. The damping coefficient
c ¼ 0.15 Nsm−1 is determined empirically by matching
measured and simulated spatial decay of traveling waves
(see Supplemental Material [45]). klin ¼ 87.03 Nm−1 is a
linear fit of measured coupling stiffness between adjacent
masses [44]. For a temporal boundary, the grounding
stiffness takes the form

kg;nðtÞ ¼
�
δj;nA0; t < τ

δj;nA1; t ≥ τ
ð2Þ

so the masses experience a discontinuous change in ground-
ing stiffness at time τ. We consider a “step-up,” where
A0 ¼ 0 and A1 ¼ Amod (depicted in Fig. 1(c)), and “step-
down,”where A0 ¼ Amod and A1 ¼ 0 ð½Amod� ¼ Nm−1Þ. To
preserve symmetry in the experimental lattice, Kronecker
delta with index j ¼ 3 to 10 applies only to masses with
grounding stiffness coils; the lack of grounding stiffness at
n ¼ 2 and 11 does not affect the spatial or temporal spectral
content of signals (see Supplemental Material [45]). The
driving force fdr;n ¼ Adrδ2;ngðtÞ, has driving amplitude
Adrð½Adr� ¼ NÞ, and Kronecker delta δ2;n applies input
forcing only to mass n ¼ 2. For all measurements and
simulations a Gaussian modulated sinusoidal pulse of the
form gðtÞ ¼ exp ½−ðt − t0Þ2=ð2σ2Þ� cos ð2πfdrtÞ is utilized
where fdr is the center frequency of the pulse, t0¼ 1.3=
ðB−6 dBfdrÞ, σ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
=ðπB−6 dBfdrÞ and B−6 dB¼ 0.6.

Temporal analog of Snell’s law and Fresnel relations—
For initial data spectrally concentrated at wave number k0
the resulting incident wave can be approximated by unðtÞ ¼
Uieiðk0nþω0ðk0ÞtÞ for t < τ where Ui is the amplitude of
the incident wave and ω0ðkÞ2¼A0=mþ4klinsin2ðk=2Þ=m.
For t > τ, the solution can be approximated by unðtÞ ¼
Utei½k0nþω1ðk0Þt� þUrei½k0n−ω1ðk0Þt� where Ut and Ur are
the amplitude of the transmitted and reflected wave,
respectively, and ω1ðkÞ2 ¼ A1=mþ 4klinsin2ðk=2Þ=m [see
Fig. 2(a) for step-up case]. Differentiating the two dispersion
relationships ω0ðkÞ2 and ω1ðkÞ2 with respect to k leads to

ω0ðkÞω0
0ðkÞ ¼ 2klin=m sinðk=2Þ cosðk=2Þ; ð3Þ

ω1ðkÞω0
1ðkÞ ¼ 2klin=m sinðk=2Þ cosðk=2Þ; ð4Þ

which implies that

δ ≔
ω0ðkÞ
ω1ðkÞ

¼ c1ðkÞ
c0ðkÞ

; ð5Þ

where the group velocities are c0ðkÞ ¼ ω0
0ðkÞ and

c1ðkÞ ¼ ω0
1ðkÞ, respectively, [see Fig. 2(b)]. Equation (5)

is a phononic analog of Snell’s law for time refraction.
Corresponding Fresnel relations are found by enforcing
continuity at the interface t ¼ τ, yielding

Ũt

Ũi
¼ 1þ δ

2
; ð6aÞ

Ũr

Ũi
¼ 1 − δ

2
; ð6bÞ

where Ũi ¼ Uieiω0ðk0Þτ, Ũt ¼ Uteiω1ðk0Þτ, Ũr ¼ Ureiω1ðk0Þτ.
Equation (6b) implies there will always be a reflected wave
unless δ ¼ 1, which corresponds to the case of no temporal
change in grounding stiffness (Amod ¼ 0). More details on
the derivation of the above Snell’s and Fresnel relations are
given in the Supplemental Material [45].
Experimental observation of temporal refraction—

The experimental platform is adapted from [5,44] (see
Ref. [45]). The one-dimensional mass-spring chain com-
prises N ring magnets sliding on a rigid rod. Adjacent
masses have opposite polarity, resulting in a repulsive force
that acts as the coupling springs. Grounding springs are
implemented using electromagnetic coils fixed concentri-
cally around the equilibrium positions of each mass. A
restoring force on each mass proportional to an applied
current provides an effective grounding stiffness. The chain
has fixed boundary conditions, and a driving electromag-
netic coil is offset axially from the equilibrium position of
the first nonfixed mass on one end. Figure 1(a) shows a
photograph of the experimental lattice, with the driving coil
and grounding spring coils indicated. Large frictional
losses limit the experimental lattice to N ¼ 12 masses.
We first demonstrate that the proposed lattice with a

temporal boundary can efficiently convert input frequency.
We consider Gaussian-modulated sinusoidal pulses inci-
dent on a temporal boundary. For the step-up, we target

FIG. 2. (a) Dispersion relation of infinite lattice before (black
dashed) and after (red solid) step-up grounding stiffness temporal
boundary [κ ¼ k=a, f ¼ ω=ð2πÞ are dimensional wave number
(radm−1) and frequency (Hz), respectively]. (b) Group velocity
versus wave number of infinite lattice before (black dashed) and
after (red solid) step-up boundary.

PHYSICAL REVIEW LETTERS 133, 077201 (2024)

077201-2



center frequencies (fdr) between 10 and 30 Hz, in 2 Hz
increments. We do not consider lower frequencies because
at fdr < 10 Hz the incident wavelength exceeds the
length of the lattice, which is limited by the presence of
friction (see Supplemental Material [45]). For the step-
down incident frequencies, we use wave packets of the
same wavelengths as the step-up, which are the postboun-
dary frequencies f1 ¼ ω1ðk0Þ=ð2πÞ of the step-up case.
At the temporal boundary τ ¼ 0.17255 s, a dc voltage
applied to the modulating coils is turned on (off) for a step-
up (step-down) boundary, resulting in an rapid change
in grounding stiffness of the modulated portion of the
lattice from kgðt < τÞ¼A0 Nm−1 to kgðt≥ τÞ¼A1 Nm−1

with a change in amplitude of Amod ≈ 106 Nm−1 (see
Supplemental Material [45]). The velocity time series of
every mass (n ¼ 2 to n ¼ 11) is measured using a laser
Doppler vibrometer (see Supplemental Material [45]).
Figure 3(a) shows a representative measurement of a
velocity time series of the input (n ¼ 2) and output
(n ¼ 11) masses for a step-up boundary.
Input frequency f0 and output frequency f1 are defined

as the location of the spectral peaks (Fourier transform) of
the input and output velocity time series, respectively. The
input velocity time series is measured at n ¼ 2 for time
t ¼ 0 to t ¼ τ to isolate the incident wave packet, and the
output velocity time series is measured at n ¼ 11 from
t ¼ τ ¼ 0.17255 s to t ¼ tmax ∈ ½0.3; 0.36� s to isolate the
transmitted wave packet. Typical spectral peaks used
to determine f0 and f1 are shown in Fig. 3(b), which
correspond to the velocity time series shown in Fig. 3(a).
Similarly, the wave packet reflected by the temporal
boundary is observed by measuring the velocity time series
at n ¼ 2 from t ¼ τ to t ¼ tmax. Distinguishing temporal
reflections from spatial reflections depends on an appro-
priate choice of tmax (see Supplemental Material [45]).
Figure 3(c) shows measured output frequency f1 versus

input frequency f0 with (step-up, red; step-down, magenta)
and without (black) temporal boundaries. Markers (step-up,
triangles; step-down, down-triangles; no boundary, circles)
show averages for both input and output frequencies with
error bars denoting standard error of six sets of measure-
ments. Solid red and magenta curves are the expected
output frequency f1 for the step-up and step-down,
respectively, and dashed black is the case of no boundary.
Expected output frequency is calculated by rearranging
Eq. (5) and substituting ω0;1¼2πf0;1, so that f1¼f0c0=c1.
Theoretical propagation speeds c0 and c1 are a function of
coupling stiffness klin and magnitude of grounding stiffness
kg;nðtÞ. In the absence of the temporal boundary, f1 ¼ f0,
and no frequency conversion is observed. Measured output
frequencies after a temporal boundary show excellent
agreement with theoretical predictions, especially the
step-up, except at higher frequencies approaching the cutoff
frequency of the lattice. The step-down suffers from
stronger dispersion of incident signals but still exhibits

clear conversion of frequency compared to the lattice without
any temporal boundary. Additionally, we plot the measured
ratio δ ¼ f0=f1 of signals refracted across the temporal
boundary as a function of theoretical incident wave number
[see Fig. 3(d)], demonstrating that frequency conversion
agrees with the analytical prediction based on the phononic
analog of Snell’s law [Eq. (5)]. Experimental frequency
conversion and ratio are compared with the same results
for a numerically simulated lattice in Figs. 3(e) and 3(f),
solving Eq. (1) using a variable step 4th order Runge-Kutta
method (MATLAB ode45) to validate our finite, linear
theoretical model.
We now demonstrate the conservation of wavelength

across the temporal boundary. Taking a two-dimensional
Fourier transform of the velocity field of the lattice before
and after the temporal boundary, we determine the fre-
quency and wave number of propagating wave packets as
the location of the maximum amplitude in the inverse

FIG. 3. (a) Representative measured velocity time series of input
mass (n ¼ 2, gray) and output mass (n ¼ 11, black) for Gaussian
pulse with center frequency f0 ¼ fdr ¼ 18 Hz. Black dashed line
denotes step-up temporal boundary. (b) Fourier transforms of
incident (gray) and transmitted signals (black) from (a), showing
frequency conversion. (c) Markers with error bars show output
frequency versus input frequency of Gaussian pulse signals in
lattice with temporal boundary (step-up, red triangles; step-down,
magenta down-triangles) and without temporal boundary (black
circles). Theoretical curves based on dispersion relationships with
(step-up, red; step-down, magenta) and without (dashed black)
temporal boundary. (d) Measured ratio of input to output fre-
quency, step-up (red triangles) and step-down (magenta down-
triangles), with theoretical phononic analog of Snell’s law (black).
(e),(f) Comparison of experimental measurement [same data as (c)
and (d)] to simulation of frequency conversion and ratio (step-up,
crosses; step-down, X’s; no boundary, stars).
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space. This is shown for two example input frequencies,
f0 ¼ 18 and 26 Hz in Figs. 4(a) and 4(b), respectively,
for the step-up, and f0 ¼ 24.5 and 30.9 Hz in Figs. 4(c)
and 4(d), respectively, for the step-down. Before the
boundary, we observe a peak (black contours) centered
near the input frequency f0 and located on the initial
dispersion relation ω0ðkÞ (dashed black) as expected.
After the boundary, the red (magenta) peaks are shifted
up (down) in the frequency axis for the step-up (step-
down), but remain at approximately the samewave number,
now aligned with the postboundary dispersion relation
ω1ðkÞ in solid red (magenta). This is in contrast to spatial
refraction, where the peak would translate left (right) in
the wave number axis onto the postboundary dispersion
relation [16]. In Fig. 4(e), incident and transmitted wave
numbers are plotted versus input frequency f0 for the full
range of input frequencies for both the step-up (black
squares and red triangles) and step-down (black circles
and magenta down-triangles) boundaries. The expected

wave number for temporal refraction, which is the initial
dispersion relation ω0ðk0Þ, is plotted for the step-up (dashed
black) and step-down (dashed gray). Discrepancies at longer
wavelengths most likely occur since low frequency input
signals do not terminate before the temporal boundary;
likewise, shorter wavelengths near the cutoff frequency
experience strong dispersion. Overall, however, in clear
contrast to the conversion of wavelength that would be
present across a spatial boundary, the experiments demon-
strate the preservation of the expected wavelength across the
temporal boundary, complementing Snell’s law to complete
the temporal analog to spatial refraction.
Last, we experimentally reconstruct the Fresnel relations

given in Eqs. (6a) and (6b). Incident wave packet ampli-
tudes (Ui) are measured as the maximum velocity of a mass
before the temporal boundary. Likewise, transmitted (Ut),
and reflected (Ur) wave packet amplitudes are given by the
maximum velocities immediately after the temporal boun-
dary at masses forward (to the right) and backward (to the
left), respectively, of the approximate spatial location of
the wave packet at the time of the temporal boundary.
Measured ratios of these amplitudes are plotted, with error
bars denoting standard error of six sets of measurements, in
Figs. 4(f) and 4(g) for the step-up and step-down, respec-
tively, along with corresponding magnitudes of the theo-
retical predictions, based on the ratio δ for the given
temporal boundary. Again, outside of smaller wave num-
bers, where longer signal periods limit measurement of
reflections in the short finite lattice, and larger wave
numbers approaching the cutoff frequency, the measured
transmitted and reflected amplitudes agree well with the
theoretical predictions, although the step-down suffers from
low transmission. Still, both cases show a dependence on
the incident wavelength in agreement with the phononic
analog to the Fresnel relations.
Dynamic slow sound—Having shown the accuracy of the

lattice model Eq. (1) [Figs. 3(e) and 3(f)], we propose the
implementation of dynamically tunable slow sound
in a longer (N ¼ 256), dissipation-free lattice of the same
design. We consider a small wave number (fdr ¼ 4 Hz),
since contrast in propagation speed across the step-up
boundary (Amod ¼ 106 Nm−1) is highest, and postboun-
dary propagation speed is small as κ → 0 [Fig. 2(b)].
Transmitted (and reflected) signals see large reduction in
group velocity compared to the incident signal, similar to
slow light in photonic crystals [46] and slow sound in sonic
crystals [47]. A subsequent step-down boundary recovers
initial signal frequency and group velocity. Figure 5(a)
shows the displacement field of this step-up–step-down
cycle. Figure 5(b) shows the same signal simulated as
Fig. 5(a) incident on a similar boundary but with realistic
damping and decreased time between boundaries τ2 − τ1.
Despite loss in amplitude (order 10−4), slowing and release
of the incident signal is observed. At fdr ¼ 4 Hz, however,
the total transmission coefficient across both boundaries is

FIG. 4. (a)–(d) Two-dimensional Fourier transform of incident
(black contours) and transmitted wave packets for step-up [red
contours in (a),(b)] and step-down [magenta contours in (c),(d)]
system for input frequencies f0 ¼ 18 (a), f0 ¼ 26 (b), f0 ¼ 24.5
(c), f0 ¼ 30.9 Hz (d). Initial (dashed black) and postboundary
(step-up red, step-down magenta) theoretical dispersion relations
also shown. (e) Measured step-up and step-down wave number
versus input frequency of incident (black circles, squares) and
transmitted (red triangles, magenta down-triangles) wave packets
with standard error. Theoretical expected wave number for
step-up (dashed black) and step-down (dashed gray) also shown.
(f),(g) Experimental measurement of Fresnel relations for step-up
(f) and step-down (g) boundaries. Amplitude ratios of transmitted
to incident wave packets (red squares) and reflected to incident
wave packets (blue triangles). Theoretical Fresnel relations based
on value of δ for temporal boundary for transmitted (solid) and
reflected (dashed) waves.
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approximately 1.6, which might compensate for losses in
potential implementations. While dissipation (and length)
limit low-frequency performance in the experimental lat-
tice, the demonstrated temporal control of dispersion might
be adapted to other discrete acoustic or elastic systems, for
example, higher-Qmembrane-basedM/NEMSwith similar
tunable stiffness schemes [48]. Structural complexity, e.g.,
diatomic arrangements, which is readily adapted in discrete
systems, has also been shown theoretically to permit
additional control including reversal of signals [49]. As
shown, temporal control of dispersion already has the
potential to enable dynamically tunable absorption [50]
or storing and releasing sound [51]. The ability to modulate
discrete elements nonuniformly offers many promising
paths to explore additional phenomena less easily imple-
mented in systems where continuous modulation fields are
required. Such tuning of medium properties at discrete
spatial elements may also extend to metamaterials where
implementation of temporal boundaries may allow switch-
able activation of double-negative, double-zero index, or
other exotic effective medium properties [52,53].
Summary and conclusions—We reported the first exper-

imental demonstration of the refraction of acoustic or elastic
waves across a temporal boundary. We present the theory
of this temporal refraction in a linearized, infinite-length
approximation of the experimental lattice, contextualizing
experimental results in analogy to the geometrical optics
interpretation. This work provides proof of concept for
design of acoustic and elastic wave guides and devices with
temporal boundaries and rapid changes in group velocity.
In particular, implementation of rapid change in stiffness by
modulation of discrete elements is potentially scalable and
realizable in more complex designs including loss compen-
sation [1,54] or cavity configurations [43], and the band-
limited nature of the discrete system considered herein may
lead to more stable dynamic responses, since resonances
with higher-order modes can be avoided [55].
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