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We report the experimental observation of modulational instability and discrete breathers in
a one-dimensional diatomic granular crystal composed of compressed elastic beads that interact
via Hertzian contact. We first characterize their effective linear spectrum both theoretically and
experimentally. We then illustrate theoretically and numerically the modulational instability of
the lower edge of the optical band. This leads to the dynamical formation of long-lived breather
structures, whose families of solutions we compute throughout the linear spectral gap. Finally, we
experimentally observe the manifestation of the modulational instability and the resulting generation
of localized breathing modes with quantitative characteristics that agree with our numerical results.

PACS numbers: 05.45.Yv, 43.25.+y, 45.70.-n, 46.40.Cd

Introduction. Intrinsic localized modes (ILMs), or dis-
crete breathers (DBs), have been a central theme in nu-
merous theoretical and experimental investigations dur-
ing the past two decades [1, 2]. Their original theoretical
proposal in settings such as anharmonic nonlinear lattices
[3] and the rigorous proof of their existence under fairly
general conditions [4] motivated studies of such modes in
a diverse host of applications, including charge-transfer
solids [5], antiferromagnets [6], superconducting Joseph-
son junctions [7], photonic crystals [8], biopolymers [9],
micromechanical cantilever arrays [10], and more.

Granular crystals, which consist of closely packed en-
sembles of elastically interacting particles, have also re-
cently drawn considerable attention. This broad interest
has arisen from their tunable dynamic response encom-
passing linear, weakly nonlinear, and strongly nonlinear
regimes [11, 12]. Such flexibility, arising from the non-
linear contact interaction between particles, makes them
ideal not only as toy models for probing the physics of
granular materials but also for the implementation of en-
gineering applications, including shock and energy ab-
sorbing layers [13], actuating devices [14], and sound
scramblers [15]. Recently nonlinear localized modes in
granular crystals have begun to be explored. Previous
studies have focused on metastable breathers in acoustic
vacuum [16], the observation of localized oscillations near
a defect [17, 18], and one-dimensional (1D) diatomic crys-
tals restricted to linear dynamics due to welded sphere
contacts [19]. Understanding and controlling localization
in granular crystals might lead to new energy harvest-
ing/filtering devices.

In this Letter, we use experiments, theory, and numeri-
cal simulations to investigate the existence, stability, and
dynamics of DBs in a compressed 1D diatomic granular
crystal. A DB consists of a small number of beads that
oscillate with an amplitude that decreases exponentially
from the central bead; its frequency lies in the forbidden
band (i.e., the gap) of the linear spectrum. We first de-

tail our experimental setup and theoretical model. We
then analyze the system’s dynamics in the linear regime,
show how a modulational instability (MI) generates DBs
in the weakly nonlinear regime, and finally provide ex-
perimental evidence of their existence.

Experimental setup. We assemble a 1D diatomic gran-
ular crystal by alternating aluminum spheres (6061-T6
type, radius Ra = 9.525 mm, mass ma = 9.75 g, elastic
modulus Ea = 73.5 GPa, Poisson ratio νa = 0.33) and
stainless steel spheres (316 type, Rb = Ra, mb = 28.84 g,
Eb = 193 GPa, νb = 0.3). The reported values of Ea,b

and νa,b are standard specifications [20]; we discuss the
precise characterization of the effective elastic properties
of our system below. We hold the spheres in place us-
ing four polycarbonate restraining bars and guide plates.
At one end of the crystal, we apply a precompressive
force using a lever-mass system. We drive the crystal
dynamically with a piezoelectric actuator that we fit on
a steel plate clamped on a steel bracket (called a “wall”
in Fig. 1). We visualize the evolution of the force-time
history of the propagating excitations using calibrated,
periodically-placed piezo sensors that we embed inside
selected particles (preserving the inertia and the bulk
stiffness of the original bead [12, 15]). We measure the
static load using a calibrated strain gauge cell that we
place in contact with the lever arm and with the last
bead of the crystal.

Theoretical model. We model a 1D diatomic crystal of
N spheres as a chain of nonlinear oscillators [11]:

miüi = A[δ0 + ui−1 − ui]
p
+ − A[δ0 + ui − ui+1]

p
+ , (1)

where [Y ]+ denotes the positive part of Y , ui is the
displacement of the ith sphere (where i ∈ {1, · · · , N})
around the static equilibrium, the masses are modd = ma

and meven = mb, and the coefficient A depends on the
exponent p and the geometry/material properties of ad-
jacent beads. The exponent p = 3/2 yields the Hertz
potential law between adjacent spheres [21]. In this case,
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FIG. 1: [Color online] Top panel: Experimental setup. Bot-
tom panel: Experimental phonon spectrum of the 81-bead
steel-aluminum diatomic crystal. The horizontal line desig-
nates half of the mean value at low frequency, and vertical
lines indicate the fexp

n cutoff frequencies given in Table I.
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, and one ob-

tains a static overlap of δ0 = (F0/A)2/3 under a static
load F0 [11, 21]. We compute the linear dispersion curve
of our system from the linearization of Eq. (1). For di-
atomic crystals, this curve contains two branches (acous-

tic and optical) [22]. At the edge of the first Brillouin
zone—i.e., at k = π

2α , where α = Ra + Rb − δ0 is
the equilibrium distance between two adjacent beads—
the linear spectrum possesses a gap between the up-
per cutoff ω1 =

√

2K2/M of the acoustic branch and

the lower cutoff ω2 =
√

2K2/m of the optical branch.

The linear stiffness is K2 = 3
2
A2/3F

1/3

0 , and we define
M = max {ma, mb} and m = min {ma, mb}. The up-
per cutoff frequency of the optical band is located at
ω3 =

√

2K2(1/m + 1/M). In Table I, we summarize K2,
A, and the three cutoff frequencies, which we estimate
using standard specifications [20] and compute using a
static load of F0 = 20 N.

Linear spectrum. We experimentally characterize the
linear spectrum of a diatomic crystal [23] (N = 81 and
F0 = 20 N) by applying low-amplitude (approximately
10 mN peak), broadband-frequency (2 − 18 kHz), and
uniform white noise for 800 ms. We measure the dy-
namic forces using a sensor located inside the 14th par-
ticle, which we add to the force from the driving voltage.
We then compute the power spectral density (PSD) of the
force-sensor, normalize it to the PSD of the driving force
(driving voltage multiplied by the actuator sensitivity),
and average the ratio over 8 acquisitions to obtain the
transfer function shown in Fig. 1. This spectrum clearly
shows forbidden bands (i.e., gaps) and permitted bands
bounded by cutoff frequencies. These frequencies match
half of the transfer function’s low-frequency level, which
we compute as the mean level in the 2−4 kHz range. We
summarize these frequencies in Table I. Matching these
frequencies to the theoretical formulas above provides an

opportunity to probe the beads’ effective parameters K2

and A shown in Table I (error bars indicate the standard
deviations from the three frequency measurements). We
find that all cutoff frequencies show a systematic upshift
of about 9% compared to the predictions from standard
specifications. We have identified four possible explana-
tions: (i) the uncertainty in the standard values of ma-
terial parameters [20]; (ii) non-Hookean elastic dynamics
might lead to a slight shift in the nonlinear exponent p
and accordingly a large deviation in the coefficient A [21];
(iii) imperfect surface smoothness might induce fluctua-
tions in p and hence in A [24]; and (iv) dissipative mech-
anisms, such as viscoelasticity and solid friction, can in-
duce stiffening of the interaction potential between par-
ticles [12, 25].

f1 [kHz] f2 [kHz] f3 [kHz] K2 [N/µm] A [N/µm3/2]

th. 4.71 8.10 9.37 12.63 5.46

exp. 5.11 8.83 10.22 14.95 ± 0.10 7.04 ± 0.07

diff. +8.5% +9.0% +9.1% +18.4% +28.8%

TABLE I: Predicted (from standard specifications [20]) ver-
sus measured cutoff frequencies, linear stiffness K2, and coef-
ficient A under a static precompression of F0 = 20 N.

Modulational Instability and DBs. We now consider
the weakly nonlinear dynamics of the granular crystal. If
the displacements have small amplitudes relative to those
due to precompression, we can take a power series expan-
sion of the forces (up to quartic displacement terms) to
yield the K2 − K3 − K4 model:

miüi =

4
∑

k=2

Kk

[

(ui+1 − ui)
k−1 − (ui − ui−1)

k−1
]

, (2)

where K3 = − 3
8
A4/3F

−1/3

0 and K4 = 3
48

A2F−1
0 . Equa-

tion (2) constitutes a diatomic variant of the Fermi-
Pasta-Ulam (FPU) nonlinear oscillator chain [26]. Be-

cause
K2

3

K2K4

> 3
4
, we expect the lower optical cutoff mode,

for which the light masses oscillate out of phase at fre-
quency f exp

2 and the heavy masses are at rest, to be sub-
ject to MI [27], which is a principal mechanism for energy
localization in nonlinear lattices [28]. In order to ver-
ify this prediction, we numerically solve Eq. (1) using
Aexp (see Table I) and the optical lower cutoff mode as
the initial condition. To trigger the MI, we choose an
initial oscillation amplitude of the light masses that cor-
responds to an 11.25 N (i.e., 0.5625F0) dynamic peak
force. As shown in Figs. 2(a), this method allows us to
observe the MI and the resulting generation of a localized
mode, after t ≃ 8 ms, with frequency fb = 7.95 kHz in
the gap. In Fig. 2(a2), one can observe an exponential
growth, which is characteristic of MI, around t ≃ 5 ms.
A more convenient way to excite the optical lower cutoff
mode is to drive the chain at one end with a sine wave
at the optical lower cutoff frequency, fact = f exp

2 . In
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FIG. 2: [Color online] (a1) Spatiotemporal evolution of the
forces for the simulated manifestation of the MI and DB gen-
eration with particle initial conditions corresponding to the
lower optical cutoff mode. (a2) Force versus time for particle
40 for the simulation shown in (a1). (b1) Spatiotemporal evo-
lution of the forces for the generation of a DB under conditions
relevant to our experimental setup. (b2) Power spectrum of
particle 36 for the simulation shown in (b1). The dashed line
in (b2) indicates the driving frequency fact = fexp

2 , and the
arrow indicates the DB frequency fb ≃ 8.14 kHz < fexp

2 .

Fig. 2(b1), we show an example of the spatiotemporal
evolution of the forces when the chain is driven during
30 ms (the amplitude of the first bead’s displacement is
about 0.061δ0). In this example, the maximum dynamic
force acting on the beads over the first 10 cycles of the
excitation is about 6.5 N ≃ 0.325F0. We thus anticipate
a weakly nonlinear response that is well described by the
K2−K3−K4 theory. Indeed, during the first 20 ms, the
optical lower cutoff mode is established; there is then an
MI after t ≃ 22 ms. The width of the extended lattice
wave is decreased, its amplitude is increased and—as a
result of the spontaneous symmetry breaking induced by
the instability—a DB is subsequently formed. (For these
initial conditions, it is localized near bead 37). This non-
linear solution exists even after the actuator is turned
off at t = 30 ms. The PSD of the force at particle 36
[see Fig. 2(b2)] reveals the presence of a frequency com-
ponent in the gap at fb ≃ 8.14 kHz < f exp

2 . From nu-
merical simulations, we find that the final location of the
DB depends on the features of the driving signal (ampli-
tude, frequency, and duration). Thus, the exact localized
pinning site is not known a priori.

Exact solutions and stability of DBs. We apply New-
ton’s method (see [2] and references therein) with free
boundary conditions to numerically obtain, with high
precision, the above dynamically-generated DB wave-
forms as exact time-periodic solutions. We then study
their linear stability and frequency dependence (within
the spectral gap). Continuing this solution within the
gap [i.e., for f ∈ (f exp

1 , f exp
2 )] starting from the optical

cutoff mode allows us to trace the entire family of DB
solutions. In Fig. 3(a), we show the maximum dynamic
force max(Fi), which is the experimentally observable pa-
rameter of the DB solution, as a function of the DB fre-
quency fb. As fb → f exp

2 , max(Fi) → 0 and the DBs
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FIG. 3: [Color online] Bifurcation diagram of the continuation
of the DB solutions. (a) Maximal dynamic force of the wave
versus frequency fb. The insets show spatial profiles at two
values of fb. (b) Maximal deviation of Floquet multipliers
from the unit circle, which indicates the instability growth
strength. The right inset shows a typical multiplier picture,
and the left inset shows the connection between the strong
(real multiplier) instability and the change in sign of dE/dfb.

broaden and finally merge with the linear optical lower
cutoff mode. In the insets of Fig. 3(a), we show exam-
ples of these solutions with frequencies fb1 = 8.35 kHz
and fb2 = 8.75 kHz. To examine the stability of the DB
solutions, we compute their Floquet multipliers λj [2].
If |λj | = 1 for all j, then the DB is linearly stable. In
Fig. 3(b), we show the stability diagram for the family
of DB solutions and the corresponding locations of Flo-
quet multipliers in the complex plane for the DB with
fb = 8.63 kHz. Strictly speaking, the DB is stable only
for fb ≃ f exp

2 . Otherwise, the DB family exhibits os-
cillatory instabilities [2, 18]. However, the deviations of
the unstable eigenvalues from the unit circle are bounded
above by 0.08, and numerical integration of the DBs up
to times 100T (where T is their period) reveals their ro-
bustness. Importantly, we also find that DB solutions
exhibit a strong instability due to a pair of real multipli-
ers when fb ∈ (8.45 kHz, 8.7 kHz). As shown in Fig. 3(b),
this instability is connected with the turning points of the
energy of the DB as a function of its frequency (these oc-
cur when dE/dfb = 0). Similar features have also been
observed in diatomic Klein-Gordon chains [29].

map: the text above said fb1 = 8.83 before I

changed it, but figure had fb = 8.63; please check

this; I changed the text to match the figure; I

assume the subscript should b by itself

Experimental observation of DBs. We excite the 81-
bead diatomic crystal by driving the actuator with a
higher-amplitude (relative to the linear-spectrum exper-
iments) 90 ms sine voltage with frequency close to the
lower optical cutoff frequency f exp

2 . We place force sen-
sors in particles 2, 6, 10, 14, 18, 22, and 26. The experi-
mental results in Fig. 4 show the MI onset and subsequent
DB formation. Figures 4(a) show the force versus time
at particles 2 (near the actuator) and 14 (close to the
DB pinning site), and Figs. 4(b) show the corresponding
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FIG. 4: [Color online] Experimental observations of MI and
DB at fexp

b ≃ 8.28 kHz, with fexp
1 < fexp

b < fexp
2 , while driv-

ing the chain at 8.90 kHz ≃ fexp
2 (see Table I) for 90 ms. (a1,

a2) Forces versus time and (b1, b2) power spectra, at particles
2 and 14. Normalized power versus lattice site at the driv-
ing frequency (open symbols) and at the DB frequency (filled
symbols), during (c1) and after (c2) MI onset. Vertical lines
in (b) mark the driving frequency and the DB frequency. Blue
(red) curves in (a, b, c) refer to time regions before (after) the
DB formation, while black refers to the entire signal.

PSDs. The peak force amplitude near the actuator is
8.6 N ≃ 0.43F0 (where F0 = 20 N). Figures 4(c) show
the normalized power versus lattice site at the driving
and DB frequencies both before and after the onset of
the DB. (Normalized power is the PSD at the given fre-
quency divided by the spectral power—i.e., the integral
of the PSD over all frequencies.) The force at particle 14
shows an exponential increase (at t ≃ 20 ms), which is
indicative of the onset of MI. This is followed by the for-
mation of a DB at t ≃ 55 ms. Figures 4(b) and (c) both
demonstrate the appearance of a frequency component
f exp

b ≃ 8.28 kHz in the gap and localization of the energy
over approximately 15 beads around site 14. Before the
DB generation, for t ≤ 35 ms, the lattice mostly vibrates
at the driving frequency, and the power is approximately
uniformly spatially distributed [see Fig. 4(c1)]. After the
formation of the DB, part of the energy is pumped from
the driving to the DB frequency, as shown in Fig. 4(c2).
The decay of the vibrations after the actuator is turned
off at t ≃ 90 ms, which does not occur in the numerical
simulations, arises from dissipation [12, 25]. However,
analysis of the PSD (in simulations) after 90 ms indicates
that the power at DB frequency is longer-lived than at
the driving frequency.

Conclusions. We have characterized the dynamics
of compressed 1D diatomic granular crystals using the-
ory, numerical simulations, and experiments. We found
good agreement for the linearized spectrum, explored the
mechanism leading to the formation of DBs via MI, and
provided clear experimental proof of their existence. Our
results provide a first step towards achieving a deeper un-
derstanding and classifying ILMs in 1D granular crystals
and pave the way for their manifestation in 2D and 3D

lattices, which might eventually lead to their exploitation
in energy-harvesting applications.
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