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ABSTRACT

In this Letter, we provide an experimental demonstration of amplitude-dependent dispersion tuning of surface acoustic waves interacting
with nonlinear resonators. Leveraging the similarity between the dispersion properties of plate edge waves and surface waves propagating in
a semi-infinite medium, we use a setup consisting of a plate with a periodic arrangement of bead-magnet resonators along one of its edges.
Nonlinear contact between the ferromagnetic beads and magnets is exploited to realize nonlinear local resonance effects. First, we experimen-
tally demonstrate the nonlinear softening nature and amplitude-dependent dynamics of a single bead-magnet resonator on both rigid and
compliant substrates. Next, the dispersion properties of the system in the linear regime are investigated. Finally, we demonstrate how the
interplay of nonlinear local resonances with plate edge waves gives rise to amplitude-dependent dispersion properties. The findings will
inform the design of more versatile surface acoustic wave devices that can passively adapt to loading conditions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151294

Surface acoustic waves (SAWs) have broad applications in sci-
ence and engineering. At the micro and nano scales, these waves are of
interest in the design of radio frequency filters for wireless telecommu-
nication systems1 as well as biosensors for medical diagnostics.2 At
larger scales, the study of these waves is essential for protecting the
built environment from the damaging effects of seismic waves.3,4 The
advent of metamaterials has realized unique engineering solutions for
manipulating these waves at vastly different frequencies. For example,
phononic crystals in the form of architected surface layers have been
used to design SAW filters, space-saving reflective gratings, and wave-
guides.5 Periodic arrangements of local resonators have also been used
to achieve subwavelength wave filtering and waveguiding,6 as well as
high-resolution imaging.7,8

Once fabricated, metamaterials for SAW control are usually
bound to produce a desired effect at a specific frequency range.
Recently, efforts have been undertaken to increase the versatility of
these systems by making their response tunable,9,10 or non-
reciprocal.11,12 Most previous work on SAW tunability has focused on
using external stimuli (e.g., thermal, magnetic, and electrical) for tuning

the wave-control capabilities of these systems.11,12 However, the addition
of external stimuli adds complexity to the system. A desirable alternative
is the design of self-tunable SAW devices, which can passively adapt to
the loading conditions without the need for external stimuli.
Incorporating nonlinearity in the design of metamaterials provides an
opportunity to explore amplitude-dependent self-tuning for SAWs.

Nonlinear metamaterials offer enhanced control over wave trans-
mission compared to their linear counterparts. Several exotic features
have already been demonstrated in these systems, including self-tun-
ability,13,14 nonreciprocity,15–17 energy tunneling, and localization18

and, more recently, the emergence of subharmonic bandgaps.19

Theoretical frameworks have been developed for determining the dis-
persion properties of nonlinear phononic lattices/crystals.20,21 More
recent theoretical investigations have focused on the effects of material
or geometric nonlinearity in elastic metamaterials.22 The effects of
nonlinear local resonators, on the other hand, have been mostly stud-
ied in the context of discrete systems.23,24 Limited works exist on wave
propagation in systems consisting of an array of nonlinear resonators
embedded in linear elastic continua.25 Even though the interaction of
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SAWs with contact-based resonators, with an inherently nonlinear
nature, has been studied previously, such studies are based on the
assumption that the amplitude of the propagating waves is small and
that the nonlinear stiffness can be linearized.26,27

Amplitude-dependent resonance is a well-documented phenom-
enon in nonlinear dynamics.28 Several works have documented this
effect for Hertzian contact resonators.29,30 A recent study on a cylin-
drical rod in contact with a bead provides an experimental proof that
the nonlinear properties of the contact lead to amplitude-dependent
resonance shifts.31 A notable experimental work had previously dem-
onstrated how resonance shifts in a one-dimensional chain of beads
connected with nonlinear springs are intimately related to shifts in dis-
persion curves for the overall system.32 In a more recent and relevant
work, the propagation of Rayleigh waves in a half-space coupled to
nonlinear resonators was considered. The authors provided a theoreti-
cal description of Rayleigh wave dispersion in the presence of harden-
ing and softening interaction forces and validated their findings using
finite element simulations.33 However, experimental investigations of
nonlinear dispersion shifts for SAWs have remained unexplored.

In this work, we leverage an experimental setup similar to that of
Ref. 10 and exploit the nonlinear dynamics of an array of contact reso-
nators to achieve amplitude-dependent dispersion properties for plate
edge waves. The compact tabletop experimental setup is shown in
Fig. 1. It consists of an acrylic plate of dimensions 608� 912� 8
mm3 (H �W � t), Young’s modulus E¼ 5.5GPa, Poisson ratio
� ¼ 0:35, and density q¼ 1190 kg m�3. The plate is clamped to an
optical table at the bottom along the longer edge. A set of 41 disk mag-
nets (K&J magnetics DH101; NdFeB, Grade N42) are glued at equal
distances of d¼ 15mm on its top edge. The magnets have a diameter
of Dm ¼ 2:5 mm and a thickness of tm ¼ 0:8 mm. The Young’s mod-
ulus Em and Poisson ratio �m of the magnet are 190GPa and 0.3,

respectively.34 Steel beads (McMaster-Carr 9642K49) with radius
rb ¼ 4:8 mm and mass mb ¼ 3:5 g are placed on top of each magnet.
The steel beads have a Young’s modulus of Eb¼ 210GPa and a
Poisson ratio of �b ¼ 0:3 (Ref. 34). The bead-magnet assemblies will
serve as nonlinear mechanical oscillators. A vibration exciter (HBK
Type 4810) is glued to the plate at a distance of ls¼ 168mm from the
first bead. A signal generator (Agilent 33220A) and power amplifier
(HBK Type 2718) are used to drive the shaker and excite vertically
polarized edge waves along the edge of the plate. A laser Doppler vibr-
ometer (LDV, Polytec OFV-5000) is mounted on a linear stage and a
motor is used to move the vibrometer and consecutively measure the
vertical velocity component at desired observation points.
Measurement data are acquired using an oscilloscope (Tektronix
DPO3034).

We use the analytical dispersion relation for thin semi-infinite
plates with stress-free boundary conditions35 to predict the phase
velocity cR of edge waves in a pristine plate:

2� c2R
c2T

 !2

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2R

c2T

 !
1� c2R

v2P

 !vuut ¼ 0; (1)

where vp ¼ ½E=qð1� �2Þ�1=2 is the velocity of dilatational waves in a
thin plate and cT ¼ ½E=2qð1þ �Þ�1=2 is the shear wave speed.35 We
note that this equation is similar to the one describing the dispersion
relation of Rayleigh waves in a half-space. Using this equation, we
make a theoretical prediction of cR¼ 1205ms�1 for the phase velocity
of edge waves propagating on a pristine plate.

Prior to investigating the dynamics of the overall system, we
characterize a single bead-magnet oscillator. We start by experimen-
tally investigating the resonance characteristics of a single bead-
magnet assembly on a rigid substrate. To do so, we attach the disk
magnet to the surface of a piezoelectric transducer (Panametrics-NDT
V1011) using cyanoacrylate glue. The bead is then placed on top of
the magnet [Figs. 2(a) and 2(b)]. Due to the importance of the contact
surface in these experiments, we thoroughly clean the surface of the
magnet as well as the steel bead before they get in contact. A Stanford
SR 860 analyzer is used for the excitation in a sine sweep mode from 5
to 8 kHz, and the laser Doppler vibrometer is used for measuring the
velocity response of the bead. We start at an amplitude of 8mV and
repeat the test by increasing the excitation amplitude at 8mV intervals.
Figure 2(c) shows the frequency response plots of the bead-magnet
resonator. The steady-state amplitudes have been normalized by the
static overlap between the bead and the magnet ds. The black and red
curves show results for sweep-up and sweep-down tests, respectively.

At low excitation amplitudes, the bead-magnet assembly is
expected to behave as a linear oscillator. Thus, the frequency response
curves from up and down sweeps coincide. The underlying linear nat-
ural frequency of the oscillator is approximately fr¼ 7 kHz. The linear-
ized normal stiffness of the resonator kN can then be estimated as
mbð2pfrÞ2. Assuming a Hertzian contact law between the bead and
the magnet, the linearized normal stiffness may also be written in
terms of the static overlap ds as kN ¼ 2E�r1=2b d1=2s ,10 where
E� ¼ ½ð1� �2bÞ=Eb þ ð1� �2mÞ=Em�

�1. From here, the static overlap
ds is approximately determined as 200nm.

As the excitation amplitude is increased, nonlinearity bends the
frequency response and shifts the locus of the peak amplitude to lower
frequencies. This is characteristic of a softening nonlinear response. In

FIG. 1. Configuration of the table-top experimental setup. (a) Image of the setup
and (b) its schematics showing the components’ dimensions as well as the location
of observation points on the plate’s edge (red) and on the resonators (blue).
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addition, the differences between up and down swept curves become
increasingly stark. Emergence of jumps in the frequency response at
an excitation amplitude of 32mV indicates the resonator’s loss of sta-
bility and is another evidence of the inherent nonlinear properties of
contact resonance.

Next, we study the dynamics of a single bead-magnet oscillator
on an acrylic plate. We present experimental evidence of higher har-
monic generation and resonance frequency shifts in the contact reso-
nator’s response. The schematic of the experimental setup is similar to
the one shown in Fig. 1, with the difference that all bead magnet reso-
nators, except the one closest to the shaker, are removed. The linear
resonance frequency of the oscillator is identified at roughly 5.15 kHz
using a broadband excitation. This shows a shift of approximately
1.85 kHz in comparison to measurements on a rigid substrate (Fig. 2),
which can be attributed to the substrate’s compliance and its coupling
to the rigid contact dynamics. A similar effect has been reported in the
previous work.10 Based on the determined resonance frequency in the
linear regime, we use a narrow-band, slow (200 s�2) sweep-down exci-
tation from 6 to 4 kHz to characterize the nonlinear response of the
oscillator. The voltage was set to 100mV, and three different excitation
amplitudes (10, 20, and 30 dB) were chosen by changing the gain on
the amplifier. The response of the bead was directly recorded by the
LDV. Figure 3 shows the time history as well as frequency spectrum
for the bead’s response. A moving average filter was used to postpro-
cess the response. Table I summarizes the main peaks in the frequency
spectrum for different levels of gain. The tabular data show that the

primary resonance frequency f1 shifts to lower frequencies as the
amplitude of the excitation increases. As discussed in the previous par-
agraph, this is characteristic of a softening nonlinear behavior.
Additionally, increasing the excitation amplitude leads to the genera-
tion of a higher harmonic f2 at twice the resonance frequency. Another
interesting feature is observed in the results by comparing the time his-
tory plots (top panel in Fig. 3). The velocity of the bead v has been nor-
malized by peak velocity vmax in each case. At lower gains, the rise and
fall of the amplitude at resonance is symmetric in shape. However, at
30 dB gain, the descent from resonance is abrupt, suggesting loss of
stability, a feature common to nonlinear resonance phenomenon.

We now move on to determine the dispersion properties of edge
waves for a plate with a periodic array of bead-magnet resonators. The
experimental setup is shown in Fig. 1. Two primary modes of
excitation are utilized in this experiment: a wideband sweep at low
amplitudes that captures the linear response of the system, and a
narrow-band slow sweep at higher amplitudes that is used to investi-
gate the nonlinear characteristics of the system. Dispersion reconstruc-
tion in the linear regime is carried out using a wideband fast (590 s�2)
sweep-up excitation from 100Hz to 6 kHz. Due to evidence of soften-
ing nonlinearity in the response of the oscillator, the nonlinear system
response is best characterized using a narrow-band slow (200 s�2)
sweep-down excitation from 6 to 4 kHz. For all the above-mentioned
cases, we study the interaction of surface waves with the array of

FIG. 2. Single bead-magnet assembly on a rigid substrate. (a) Schematics of the
problem and the forces exerted on the bead. The inset shows the static overlap ds
between the surfaces in contact at rest. Fc and Fm are the contact and magnetic
force, respectively. (b) Schematic of the experimental setup. (c) Up-sweep (black)
and down-sweep (red) experimental frequency response functions for the bead-
magnet resonator at 8 mV-interval excitation amplitudes.

FIG. 3. Experimental results for the single bead-magnet resonator on the acrylic
plate. The top panel shows the time history responses at the three gain levels,
shifted for better visualization. The bottom panel shows the frequency domain
response of the single bead-magnet resonator.

TABLE I. Resonance frequencies of the single bead-magnet resonator on the acrylic
plate.

Gain (dB) f1 (kHz) f2 (kHz) f2=f1

10 5.15 � � � � � �
20 5.12 10.2 1.99
30 4.80 9.57 1.99
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bead-magnet resonators by recording the vertical velocity at 42 sta-
tions on the edge of the plate, marked as red circles in Fig. 1. The dis-
tance between adjacent observation points is 15mm.

To unveil the linear response of the system, which is used as a
baseline to understand the effects of nonlinearity, we reconstruct the
dispersion for the pristine plate and the plate with an array of bead-
magnet resonators. Figure 4(a) shows the experimental dispersion
curve for the pristine plate in a gray-scale contour. The broadband
chirp generated by the shaker travels along the plate’s edge dispersion-
less, as expected. The dashed orange curve shows the Rayleigh wave
speed cR¼ 1205m/s given by Eq. (1). We note that gluing the array of
magnets to the plate’s edge does not introduce any dispersion effects
since the magnets’ mass (�0:03 g) is negligible. Figure 4(b) shows the
dispersion curves for the plate with an array of bead-magnet resona-
tors. Placing the contact resonators on the plate’s edge leads to hybridi-
zation between the traveling wave and the resonance modes. The
slow-propagating flat branch observed in the dispersion plot is a result
of SAW interaction with vertical resonances of the bead-magnet reso-
nators.10,27 The frequency where the branch flattens agrees well with
the primary resonance frequency for a single bead on the acrylic plate,
determined previously.

In order to investigate the behavior of the system in the nonlinear
regime, we use the slow narrow-band chirp. Three different excitation
amplitudes were chosen by changing the gain on the amplifier. In
order to quantify confidence in the experimental results, three sets of
measurements were done at each gain, leading to nine sets of data in
total. After each measurement, all beads were removed, cleaned, and
placed on the magnets again. This was done to ensure that the results
were not significantly affected by the uncertainties associated with the
bead-magnet contact surface. Furthermore, the order in which the
nine experiments were done was random. For each set of measure-
ments at constant amplitude, recorded spatiotemporal data on the

plate’s edge were postprocessed using 2D Fourier transforms. The
average of normalized Fourier amplitudes over each three sets of mea-
surements was then used to visualize the system’s dispersion.

Figure 4(c) shows the reconstructed dispersion for the structure
at 20 dB gain. The gray-scale contour shows the full 2D visualization
of response in the wave number-frequency domain, with white
showing the highest intensity. At each discrete frequency value, the
wave-number corresponding to the maximum Fourier amplitude was
identified. This gives the overlaid scattered plot in a gradient of red.
The color of these markers at each point indicates the intensity of the
normalized Fourier amplitude, with white having the lowest intensity
and red having the highest. This approach will prove itself crucial later
for comparing the dispersion branches at different gain levels. It also
helps highlight data points of greater significance. For example, we can
see that the data points lying outside the sound cone are of extremely
low intensity and, therefore, of little significance. Thus, we can safely
ignore them. The band structure at the other two excitation ampli-
tudes (10 and 30 dB) is constructed in a similar manner.

Figure 5(a) shows the dispersion branches reconstructed at the
three different amplitudes. The scattered plots are now shown in the
form of error-bar plots; that is, at each frequency, the marker indicates
the mean and the horizontal bar shows the standard deviation of the
wavenumber corresponding to the maximum Fourier amplitude for
the three sets of measurements. It is clear that in the regions where
Fourier amplitude is high, standard deviation is extremely small. On
the contrary, as intensity approaches zero, the standard deviation
becomes very large. In the regions of high intensity and low standard
deviation, the figure shows that increasing the excitation amplitude
shifts the dispersion curve to lower frequencies. In other words, with
an increase in the excitation amplitude, the wavenumber correspond-
ing to a fixed frequency increases. This is quantitatively shown in
Table II for three select frequencies.

FIG. 4. Dispersion reconstruction using experimental measurements: (a) the pristine plate in the linear regime, (b) the plate with an array of bead-magnet resonators in the lin-
ear regime (10 dB gain), and (c) the plate with an array of bead-magnet resonators in the nonlinear regime (20 dB gain). The dashed orange line indicates the Rayleigh wave
dispersion curve.
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Figure 5(b) shows the dispersion branches in a more limited
wave number-frequency region to highlight the amplitude-dependent
dispersion shift. Just like in the softening theoretical prediction of
Palermo et al.,33 we observe that (i) an increase in excitation amplitude
in the presence of softening nonlinearity shifts the dispersion branch
down and (ii) higher-amplitude branches tend to terminate early, i.e.,
at lower wavenumbers compared to their low-amplitude counterparts.
The early termination may be explained by the onset of instability for
the surface resonators.33 Comparing wavenumber–frequency pairs at
a certain threshold of the normalized Fourier amplitude intensity
proves useful for quantifying the early termination of dispersion
branches. For example, a 0.3 normalized Fourier amplitude intensity
corresponds to the point (7.0204 1/m, 5302.4Hz) on the dispersion
branch at 10 dB excitation amplitude. However, at the same intensity,
wavenumber-frequency pairs at 20 and 30 dB are (6.901 1/m,
5235.7Hz) and (6.6515 1/m, 5092.6Hz), respectively. As such, the ter-
mination wavenumber decreases by 1.7% from 10 to 20 dB and 3.62%
from 20 to 30 dB.

In conclusion, we have investigated the interaction of surface
acoustic waves with nonlinear contact resonators and provided experi-
mental evidence of amplitude-dependent surface wave dispersion.
Careful investigation of the bead-magnet’s dynamics revealed several
features common to softening nonlinear oscillators, such as

amplitude-dependent resonance frequency, higher harmonic genera-
tion, and loss of stability. These characteristics make the array of bead-
magnet assemblies suitable for use as nonlinear resonators in a
compact setup. In the current setup, the surface wave energy available
for interaction with the nonlinear resonators is limited due to the max-
imum force rating of the shaker and the overall energy loss in the sys-
tem. This prevents the realization of more significant shifts, such as
those induced by external stimuli.10 However, this proof-of-concept
demonstration serves as a motivation for other researchers to design
novel solutions to induce more dramatic self-tuning effects for SAWs.
These could include creating a waveguide close to the plate’s edge to
maximize the surface wave energy and exploring the dynamics of the
resonators in the vibroimpact region. Loss of contact nonlinearity for
Hertzian contact resonators has been shown to induce more signifi-
cant resonance frequency shifts.29,30
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