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Metamaterials utilize subwavelength structures to control 
wave propagation, achieving extreme functionalities such 
as focusing beyond the diffraction limit1–5, performing 

mathematical operations with light6 or cloaking objects7,8. While the 
potential of metamaterials is well established, and advanced model-
ling techniques9–16 enable the design of some specific functionalities 
within the electromagnetic domain, we lack systematic approaches 
to directly encode a generic dynamic functionality into a meta-
material particularly within the mechanical domain. Data-driven 
design approaches17–20 have been successful in engineering quasi-
static material properties, but extending them to dynamics requires 
taking into account the interactions between multiple modes of the 
unit cell. Here, we advocate a systematic approach to design the 
dynamic properties of a metamaterial.

The key challenge is to bridge the vast design space of pos-
sible metamaterial structures and the overwhelming complexity of 
the targeted physical effect. For example, the phenomenon of the 
appearance of a topological surface phonon in a mechanical meta-
material cannot be cast into a simple cost function for optimization. 
However, there are simple discrete models with a small number of 
parameters that encode this functionality. The key idea of this paper 
is to use such discrete models as an intermediary between the con-
tinuous design space of metamaterial geometries and the targeted 
functionality (Fig. 1a).

Building systems with complex behaviour from discrete 
elements is a standard tool in electronics21–23, where complex 
devices are designed by combining discrete ‘lumped’ elements, 
such as capacitors or inductors. The two challenges we need to 
overcome, to translate discrete systems into metamaterials, are to 
identify which metamaterial structures make up which ‘lumped’ 
elements, and to quantify how these structures interact with 
each other. In other words, we need an efficient way to reduce 
the dynamical behaviour of the material to a discrete model and 
an efficient way to assess how changes to the design influence 

the reduced-order model. Identifying the regime where these 
changes are linear allows us to explore the design space for indi-
vidual elements and then add their effect. This additive property 
allows us to divide the search space into much smaller inde-
pendent subspaces, resulting in an exponential speed-up of the 
search process.

Here, we successfully address these two challenges with ‘pertur-
bative metamaterials’: systems consisting of unit cells with a spec-
trum of linear normal modes that weakly interact with modes of 
neighbouring unit cells. We obtain reduced-order models for our 
metamaterial through a method adapted from quantum material 
science: we use the Schrieffer–Wolff transformation24,25 to isolate 
modes in the frequency range of interest. We show that with a suit-
able series expansion of the Schrieffer–Wolff transformation, we 
can explore on the order of 1040 design configurations, which is 
impossible to do using optimization methods with current compu-
tational power.

Our core design approach includes: mapping the elements of a 
target mass–spring model to elements in the metamaterial design; 
the creation of a database of such independent design elements; the 
combinatorial search of this database; a final refinement correct-
ing for weak nonlinearities (that is, spurious mutual influences of 
the different geometric elements). These four steps are detailed in 
numerical design examples of elastic metamaterials comprised of 
stiff plates connected by soft beams (Fig.  1b). However, the gen-
eral idea is readily translated to acoustics, optics and so on, if weak 
coupling of building blocks is achieved (in acoustics, weak cou-
pling can be achieved by small constrictions, whereas in optics this 
can achieved with tunnel coupled waveguides). We illustrate our 
method on three examples of increasing complexity.

Extracting a reduced-order model from a metamaterial
In this section, we present a method to extract effective reduced-
order models from metamaterials consisting of weakly interacting 
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units, valid over a chosen frequency range of interest. Our selected 
metamaterial example is in the elastic domain, and contains three 
basic design elements: vibrational modes of plates, beams that cou-
ple the plate modes, and holes that shift local plate frequencies. For 
applications in other realms, one needs only to replace plates, beams 
and holes with elements that have resonant modes, and that couple 
or frequency-shift local modes. The following reduced-order model 
gives us an efficient way to calculate the coupling and frequency shift 
of the modes of the metamaterial system, which we refer to as V.

Assume we have two plates that are coupled with a beam 
(Fig.  1b). The modal discretized displacement field of the two 
uncoupled plates is defined with the vector u, within a finite- 
element framework (modelling elasto-dynamics of continuous sys-
tem). Assuming the beams are short enough that we can consider 
their effect as instantaneous and neglect their internal degrees of 
freedom (DOFs), the equation of motion of the coupled plate sys-
tem can be written as

Δ Δ¨ + + + =−M M K Ku u([ ] [ ]) 0 (1)( 1)

where M and K represent the effective mass and stiffness of the 
plates, and Δ​M and Δ​K represent the influences of the beams. 
Under the assumption of weakly interacting unit cells, we can 
neglect higher powers of Δ​K and Δ​M, such that

¨ + + =H Vu u( ) 0 (2)0

Here, (H0+​V) is the dynamical matrix of the full coupled system, 
consisting of H0 =​ M−1K, the diagonalized dynamical matrix of the 
uncoupled plates, and V =​ MΔ​K−Δ​MK, the perturbation due to 
the beams. This perturbation V has two effects: first, it shifts the 
local mode frequencies and second, it couples each mode of the unit 
cell to all modes of the same and neighbouring unit cells. The lat-
ter prevents us from restricting our description to only modes that 
lie in our frequency range of interest; that is, H0+​V is not block-
diagonal, but instead contains coupling terms between our modes 
of interest and irrelevant modes. We determine the perturbation, V, 
from finite-element simulations of systems containing a few plates 
subjected to this perturbation (for example, Fig.  1b) (Methods, 
Supplementary Section 1 and Supplementary Fig. 2).

To remove the coupling between relevant and irrelevant spaces, 
we identify a suitable rotation of the dynamical matrix. This is 
accomplished by performing a Schrieffer–Wolff transformation 
(Supplementary Section 1 and Supplementary Fig. 1). Originally 
developed in the context of the Anderson tight-binding model 
of magnetic impurities in metals24, the Schrieffer–Wolff trans-
formation is the rotation matrix R such that R(H0+​V)RT is block 
diagonal25; that is, it does not present any coupling between modes 
in the frequency range of interest and other modes. This model 
reduction is common in condensed-matter physics26,27, but has 
never been used to analyse or engineer the dynamical response of 
metamaterials.

The Schrieffer–Wolff transformation can be calculated perturba-
tively, with the expansion parameter25

ϵ =
−

V

E E
(3)

ij

i j

where Ei and Ej are eigenvalues of the uncoupled system, and Vij is 
the coupling between modes i and j. This expansion parameter can 
be interpreted as the strength of the coupling relative to the spec-
tral gap between the mode of interest and other modes. For small 
coupling values, the first-order term provides a satisfactory approxi-
mation. This first-order term is linear, which means the effects of 
the design elements (beams and holes in the plate system) are addi-
tive (Supplementary Section 2 and Supplementary Fig. 3). This is 
of crucial importance later for our design approach. Higher orders 
of the Schrieffer–Wolff transformation provide a more accurate 
reduced-order description of the system in the presence of stron-
ger couplings, but contain long-range interactions (that is, stiff-
ness terms that couple plates not physically connected by beams; 
Supplementary Section 1).

Equipped with an efficient mapping between the metamaterial 
geometry and reduced-order model, we discuss three examples 
of the proposed design approach. For illustration purposes, our 
examples proceed in order of increasing complexity. We start with 
a negative-refraction Veselago lens, a well-known system that can 
be realized with conventional metamaterial design techniques 
(such as, dynamic homogenization of metamaterials with local 
resonances28), but illustrates the correspondence between discrete-
model elements and geometric features, and the implementation 
of positive and negative couplings. We then present a zero-group-
velocity metamaterial demonstrating the use of degenerate modes 
and multiple resonant elements per unit cell. Finally, a topological 
phonon metamaterial based on a reduced-order model correspond-
ing to a quantum spin Hall Hamiltonian showcases the full potential 
of the technique.

Metamaterial design
Our design approach starts by mapping the degrees of freedom 
from the target mass–spring model to DOFs in the metamaterial 
(plate modes in our elastic example). It continues by calculating a 
database characterizing the perturbation V introduced by differ-
ent geometric elements (beams and holes in our case) using finite-
element simulations. We then use the database to perform multiple 
combinatorial searches in different subspaces of the design space. 
This provides a good approximation of the metamaterial dynam-
ics, since our perturbative design has been chosen so the first-order 
(linear) term of the Schrieffer–Wolff transformation provides an 
adequate description. We finally perform a gradient optimization 
on a design containing multiple unit cells, to cancel second-order 
effects arising from the interaction between different geometric ele-
ments. This gradient optimization leads to a highly accurate design 
if the nonlinearity is sufficiently small.

In our design examples, the mapping of metamaterial modes to 
the discrete model DOFs is the only heuristic step, although this 
could easily be automated. We note that all design examples pre-
sented here are numerical simulations using finite-element mod-
elling. We model steel plates of size 10 mm ×​ 10 mm ×​ 0.5 mm, and 
epoxy resin beams of length 1 mm, thickness 0.5 mm, and width 
varying in the range 0.1–0.3 mm. Numerical details and the example 
mass–spring models are given in the Methods.

Phononic Veselago lens. We choose the classical Veselago lens29 
metamaterial as a first example, as it is a well-understood system that 
has been demonstrated in both optical1 and phononic5 platforms. In 
the phononic Veselago lens, a double-negative medium (that is, a 

a Discrete model b

Beam

Plate

Metamaterial

Hole

Fig. 1 | Design method concept. a, Design concept of implementing  
the dynamic functionality of a discrete model in a metamaterial.  
b, Metamaterial design implementation illustrating geometric features: 
plates, beams and holes.
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medium with negative effective modulus (–K) and negative effec-
tive density) is embedded in a conventional medium of equal but 
positive modulus (+​K) and positive effective density (Fig. 2a). We 
create a mass–spring system that approximates the lens in a square 
lattice. The basic unit cell consists of a single resonator connected by 
springs to its four nearest neighbours (Fig. 2b).

We chose the 24th plate mode as our local DOF because this 
mode has a high enough stiffness compared with the beams and 
is well separated from neighbouring modes (Fig.  2b). Then we 
tabulate the perturbations of geometric elements by parameteriz-
ing the beam location, width (Supplementary Fig. 4) and offsets of 
the neighbouring plate (Fig. 2c) to calculate the desired couplings 
(Fig. 2d), and parameterizing the hole locations and radii to calcu-
late the local frequency shift (Fig. 2e). We then perform the com-
binatorial searches on subspaces of individual geometric elements 
to yield the desired model (Fig. 2b). We finally perform a gradient 
optimization to reduce the error between the desired model and the 
metamaterial.

We analyse the resulting metamaterial lens using finite-element 
simulations (Methods). The results clearly illustrate the Veselago 
lens effect (Fig. 2f), where a planar inclusion of a doubly negative 
material leads to a perfect flat lens. Moreover, we show good agree-
ment between finite-element simulations and the results of the 
mass–spring model (Fig. 2g).

Zero-group-velocity material. In the above example, we used one 
local mode per plate. We now demonstrate the mapping of multiple 
degenerate modes of a single plate to the DOFs of the discrete model 
by designing a zero-group-velocity (cg) material. The zero-cg mate-
rial is analogous to a one-dimensional strip of a Lieb lattice30, and is 

of interest as it is a perfectly periodic configuration with non-trivial 
couplings leading to a flat band. Such slow-wave states have been 
explored recently in photonic waveguides31,32 and could have appli-
cations in sensing and information storage devices.

The zero-cg lattice unit cell consists of three equal resonators in 
an ‘L’ configuration (Fig. 3a). In our target mass–spring model, we 
add an additional resonator not present in the original zero-cg lat-
tice, such that each vertical column in Fig. 3a can map to a pair of 
degenerate modes of a single plate (Fig. 3b). We chose the degener-
ate plate modes 21 and 22 (Fig. 3b). This selection is motivated by 
the following requirements: there is good separation between the 
degenerate pair of interest and neighbouring modes; and the mode 
profiles at the boundary exhibit a complex structure that enables us 
to achieve a wide variety of coupling stiffness. To prevent the addi-
tional resonator from influencing our desired dynamics, we shift its 
frequency outside our range of interest with the holes in the plate.

The simulated metamaterial dispersion matches the predic-
tions of the objective mass–spring model (Fig. 3d), with only minor 
deviations from zero group velocity in the flat band arising from 
high-order long-range couplings (Supplementary Section 3 and 
Supplementary Fig. 5). This corroborates the ability of our method 
to engineer material performances.

Topological insulator. Topological insulators are electrically insu-
lating in the bulk, yet conductive on the surface, and their surface 
states are immune to back-scattering and defects33–35. These mate-
rials have inspired a class of mechanical systems that mimic the 
functionality of topological insulators in the elastic domain36–42. 
Researchers have developed several analogies between topologi-
cal spin–orbit systems and highly complex discrete mechanical 
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Fig. 2 | Veselago lens metamaterial example. a, A schematic of focusing in the Veselago lens. b, Mass–spring model of the lens, showing construction of 
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and negative springs), and the corresponding metamaterial unit cells. Lattice sites (x1, x2, x3, x4) are local resonators with their own mass and spring. The 
mass–spring model contains 100 ×​ 100 unit cells, where the double-negative region consists of 19 unit cells in the centre. c, Illustration of the plate offset 
concept with mode 24: when plates are aligned (left), only couplings of one sign are possible. If plates are offset by distance d, both positive and negative 
couplings are possible. d, Calculated coupling stiffness for different beam locations at a given offset, where data points show locations of the beams to 
achieve positive and negatives stiffness. e, Calculated local stiffness change for different hole radii, where data points show the radii in each of the four 
unit cells for the intra-plate coupling compensations. f, Results for the metamaterial lens from finite-element simulations, at 175.284 kHz. g, Results for the 
mass–spring model lens, at 175.204 kHz. The colour bar applies to both f and g, and indicates the normalized amplitude of the r.m.s. displacement.
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lattices36,43,44. Here, we focus on the mass–spring model proposed 
in ref. 36, which contains six DOFs per unit cell (Fig.  4a). While 
this model was realized in a system of coupled pendula36, each 
of which corresponds trivially to a discrete mass–spring resona-
tor, the design of a metamaterial geometry implementing such a 
model remains an open research problem that our approach is able 
to solve.

This example highlights the ability of our method of using dis-
crete models to design metamaterials. Properties such as topologi-
cal phonons cannot be encoded using conventional algorithms: 

the topological invariants are quantized, which precludes the use 
of gradient methods, and their evaluation is extremely expensive, 
requiring the finite-element simulation of the material’s dispersion 
relation at closely spaced wavenumbers for each individual geomet-
ric configuration. In contrast, a discrete tight-binding model, such 
as the one exploited here, can capture topological and other com-
plex functionalities in a straightforward way.

The designed metamaterial translates each 2-DOF site into a 
single plate, utilizing the free plate modes 21 and 22 as degrees of 
freedom. Thus, the unit cell consists of three plates coupled with 
beams (Fig.  4b), whose locations and thickness are optimized to 
match the required stiffness matrices (Methods). We follow the 
same procedure as in the zero-group-velocity example. Due to the 
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higher complexity of the topological insulator discrete model, we 
allow the beams to be inclined (Fig. 4b) and use each beam angle 
as an additional fitting parameter. This increases the combinatorial 
search space and allows us to identify a suitable geometry.

The resulting metamaterial shows several distinctive features 
arising from the topologically non-trivial nature of the system’s 
dynamics. First, the dispersion relation of a semi-infinite metama-
terial stripe shows the characteristic pair of counter-propagating 
edge bands, crossing at π​/3 and 2π​/3, in the gaps between the three 
bulk bands. Second, the normal modes of a finite material (contain-
ing 7 ×​ 7 plates) show the presence of edge modes (Fig. 4d) that are 
in good agreement with the predictions of the target mass–spring 
model (Supplementary Section 4 and Supplementary Figs. 6 and 7). 
Finally, we demonstrate the topologically induced robustness of the 
edge modes against boundary defects, by simulating the same 7 ×​ 7 
finite system with three fixed plates obstructing the boundary mode 
(Fig.  4e). The edge mode persists despite the obstruction, high-
lighting the ability of topologically protected phonons to be used as 
defect-immune waveguides.

Advantages, limitations and outlook
The proposed method implements generic reduced-order, or tight-
binding, models directly in complex metamaterials. This is accom-
plished by bringing concepts from quantum condensed matter to 
metamaterials, which enables the realization of various theoretical 
systems (such as exotic types of topological insulator). As tight-
binding models can encode highly non-trivial phenomenology in 
a few very simple building blocks, using such models as a bridge 
between the desired phenomenology and a metamaterial’s geometry 
provides a versatile tool45 to engineer responses of metamaterials in 
various domains (such as mechanics, acoustics and photonics).

Our method complements other design tools46–48 in that it can 
implement discrete models containing complex couplings (that is, 
multimodal, positive and negative). As such, it can realize func-
tionalities (for example, topological protection) that are hard to 
capture in alternative paradigms such as homogenization48. It is 
applicable in generic platforms (mechanical, electromagnetic and 
photonic), as long as the weak coupling requirement is satisfied. 
This design method can be used in conjunction with other meta-
material analysis and design tools such as transformation optics10,49, 
by utilizing transformation optics to determine the effective mate-
rial properties required to manipulate an incident wave, and then 
our method to determine the metamaterial geometry necessary to 
achieve these properties.

The essential limitation of our method is its constraint to be 
implemented via weakly coupled unit cells. This means that our 
design approach cannot be used on platforms that are inherently 
strongly interacting. In addition, the requirement of weak interac-
tion also results in narrowband effects. However, there are many 
applications that are compatible with such narrow bandwidth (for 
example, wireless communications, isolation and focusing of nar-
rowband signals). Moreover, implemented for visible light with a 
base frequency of hundreds of terahertz, the weak-coupling con-
straints still allows for bandwidth in the terahertz regime. Another 
shortcoming of our method in its current form is the presence unac-
counted resonances of the coupling elements (beams), which lead to 
retardation effects and limit the frequency of operation.

Further exploration should aim at increasing the available band-
width and reducing constraints in the material parameters (for 
example, by accounting for beam retardation effects), deliberately 
introducing nonlinearity and providing experimental demonstra-
tions in alternative platforms (electromagnetics21,50 and photonics). 
Another direction of research opened by this work involves the 
development of reduced-order models implementing relevant func-
tionalities (for example, filters, logic gates or photonic circuits with 
extreme computing capabilities6).

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41563-017-0003-3.
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Methods
The results presented in this paper have been calculated by using COMSOL 
Multiphysics for the finite-element simulations and MATLAB for the linear  
algebra calculations (except otherwise indicated). The two programs can 
communicate through the LiveLink interface provided by COMSOL.  
The simulations were performed in ETH Euler cluster nodes and accessed up to 
400 GB of RAM.

In all simulations, we have used a linear elastic model with material parameters 
from epoxy resin for the beams (Young’s modulus EB =​ 4.02 GPa, Poisson ratio 
vB =​ 0.22 and density ρB =​ 1,190 kg m–3) and steel for the plates (Ep =​ 193 GPa, 
vp =​ 0.3 and ρp =​ 8,050). We model steel plates of size 10 mm ×​ 10 mm ×​ 0.5 mm, 
and epoxy resin beams of length 1 mm, thickness 0.5 mm, and width varying in the 
range 0.1–0.3 mm.

Extracting the coupling matrix V from finite-element simulation. We extract 
the coupling matrices by calculating the first 80 eigenmodes for a system of two 
steel plates coupled by a single polymer beam. The eigenmodes are calculated 
using the COMSOL Multiphysics 3D linear elasticity solver, with a highly refined 
mesh containing 964,000 elements. This fine mesh is required since the frequency 
shift introduced by the beams is much smaller than the resonance frequency of the 
plates, and therefore small imprecisions in the plate eigenfrequencies result in large 
relative errors in the calculated coupling matrix.

We then sample the x, y and z components of each eigenmode’s 
displacement. The sampling is done at 2,268 points at each plate, distributed 
over a test area extending 2 mm from the sides of the plate. The sampled 
displacements u for the 80 relevant eigenmodes are stored in a matrix, whose 
ith column U j

i  contains the x, y and z displacement for the ith eigenmode: 
= … … …( )x x x y y y z z zU , , , , , , , , , ,j

i i i i i i i i i i T
1 2 2,268 1 2 2,268 1 2 2,268 . The subindex j is used to 

distinguish between the two plates.
We express the displacement of the coupled-plate system in terms of a basis 

containing the first 40 normal modes of a free plate. As our finite basis consists 
of a limited number of modes, it is incapable of exactly reproducing the coupled 
vibration profiles. For this reason, we use the Moore–Penrose pseudoinverse, 
which provides a least-square approximation to the mode profile. This 
approximation is given by = −A A AP U( )j

T T
j

1  where A is a matrix whose ith column 
contains the displacement of the ith free-plate eigenmode, sampled over the test 
area and organized in the same layout as Uj. We use 80 eigenmodes of the coupled 
system and 40 eigenmodes for the free plate. The mode selection must take into 
account several aspects: The number of eigenmodes for the two-plate coupled 
system should be twice the number of modes for the individual system, the coupled 
modes should not include any beam resonances, and families of degenerate modes 
should be either completely included or completely excluded. Once the matrix Pj 
has been calculated, we assemble the matrix:

=










P
P
P

1

2

and calculate the coupling matrix as V =​ PDP−1−​H0, where D is an 80 ×​ 80  
square matrix whose diagonal elements contain the eigenvalues of the coupled 
system, δ= π( )D f2ij i ij

2
, and H0 contains the eigenvalues of an unperturbed  

single plate:

=










H D
D
0

0
0

0

0

with δ= π( )D f2ij i ij
0 0 2

 and f i
0 being the ith eigenfrequency of an  

unperturbed plate.
The coupling matrix extraction method is equivalent to the first-order  

term of the Schrieffer–Wolff transformation, for a low-energy space spanning  
the first 40 eigenmodes of the unperturbed plate. This is because to first order,  
the Schrieffer–Wolff transformation is simply a restriction on the low-energy 
subspace, with the identity as a rotation matrix (Supplementary Section 1).  
Once this first-order transformation has been performed on a large low-energy  
subspace (spanning 40 local modes), we determine the effective theory for our 
1–2-mode subspace by calculating a second Schrieffer–Wolff transformation 
approximated as a series expansion to an order between 1 and 4  
(Supplementary Section 1).

Optimization process. Objective models. Here we describe the objective 
matrices VT describing the design examples in the paper. For clarity, we use two 
separate coupling terms: V is the coupling between modes describing the actual 
metamaterial system, while VT is the targeted coupling in the mass–spring model, 
whose functionality we seek to replicate. Our design approach seeks to adjust the 
metamaterial so V matches the desired VT.

Phononic Veselago lens. The target coupling stiffness between unit cells is 
either +​K or –K. The effective masses are obtained by shifting the local resonance 

frequencies of the sites inside and outside the lens region. The normalized effective 
mass of a harmonic oscillator at a particular frequency is

ω
ω
ω

= −










M ( ) 1eff
0
2

2

where ω0 is the resonance frequency of the mode and ω is the frequency of 
operation of the lens. The Veselago lens requires ω ω= −M M( ) ( )lens medium . The 
relation between the local resonance frequency of the sites inside and outside the 
lens region is thus ω ω ω= −2lens

2 2
medium
2 .

Zero-group-velocity material. The equation of motion of the system in Fig. 3b is 
¨ = + ++ −V V Vu u u ui i

T
i m

T
i m

T
imod2 ( 1) ( 1). The vector ui contains the two DOFs x and 

y corresponding to the ith plate. The target matrices representing inter-plate 
couplings (Vm

T) and the local plate stiffness matrices (VT
0 , VT

1 ) are

α β α
α β

β
β Δ

= = = +






























V V V0
0 0 , ,

0
0m

T T T
1 0

where α is the coupling strength, β is the local stiffness of the plate, α <​<​ β, and Δ is 
the frequency shift that separates the undesired additional mode introduced in the 
mapping stage.

We determine the plate offset, and thickness and position of the beams that 
best approximate the target coupling matrix Vm

T  by performing a combinatorial 
search in the space of three-beam couplings. This is carried out by adding 
together the results from a pre-computed table of single-beam stiffness matrices 
corresponding to different beam locations and thicknesses. We then find the plate 
hole locations to satisfy the target matrices VT

1  and VT
0  using the same procedure. 

We finally perform a gradient-based optimization on a system containing multiple 
unit cells to reduce the second-order errors between the metamaterial and target 
stiffness (Supplementary Section 3).

Topological insulator. The mass–spring model unit cell for this topological 
insulator consists of three 2-DOF lattice sites36 (Fig. 4a). The equation of motion 
is ¨ = + + + ++ − + −V V V V Vu u u u u uij

T
ij

T
i j

T
i j i

T
i j i i jL 0 ( 1) 0 ( 1) mod3 ( 1) mod3

T
( 1). The vector u 

contains the two DOFs x and y, and i and j are the row and column indices of the 
unit cells in Fig. 4a. The target inter-plate coupling matrices are

α=
∕ ∕

− ∕ ∕












V
n n
n n

cos(2 3) sin(2 3)
sin(2 3) cos(2 3)n

T

where n is an integer that spans from 0 to 2. The intra-plate coupling matrix is 
β=V IT

L 2 , where I2 is the 2 ×​ 2 identity matrix, and β and α are as defined above.

Combinatorial optimization. We identify the optimal beam locations by performing 
an exhaustive search on combinations of beam locations and thicknesses. In 
this step, we calculate the coupling matrix Vij

R for a system containing multiple 
inter-plate coupling beams by adding together the coupling matrices of systems 
containing a single coupling beam. The validity of this approximation is examined 
in Supplementary Section 2 and Supplementary Section 3.

We first run the optimization code for different plate offsets in the range 
between 2 mm and 4 mm, with a spacing of 0.2 mm. We then assemble a table of 
coupling matrices Vij as a function of the beam location, for a fixed beam width 
of 0.2 mm. The coupling matrices are calculated using the finite-element method 
described in the coupling matrix extraction section. The coupling matrices 
corresponding to beam widths other than 0.2 mm are calculated assuming 
a linear relation between the beam width and the coupling matrix (that is, 

= ∕V w w w V w( ) [ ] ( )ij ij0 0 ).
We then evaluate all combinations of beam locations (in steps of 0.1 mm) and 

beam widths (between 0.1 m and 0.5 mm in steps of 0.01 mm). We identify the 
optimal beam parameters by comparing the calculated coupling matrices with the 
objective coupling matrices. Before this comparison, the calculated and objective 
matrices Vij are normalized using the Hilbert–Schmidt norm =V V VTr[ ]T . 
This is done because the exact norm can be adjusted after the fact by finely scaling 
the beam widths, and is enabled by the approximately linear relation between the 
beam width and the coupling matrix (Supplementary Section 2). In this step, we 
discard beam combinations whose norm is more than 50% off the target value, 
because those would result in extreme beam dimensions after rescaling.

The exhaustive search code is written in C+​+​ to maximize its speed. For every 
offset (we considered ten of them), the code explores 109−​1010 configurations and 
takes between 43 s and 197 s to run on a 2.5 GHz Intel Core i7 laptop.

Gradient optimization. The gradient optimization is performed after the exhaustive 
search, to refine the beam parameters and account for interactions between 

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature Materials | www.nature.com/naturematerials

http://www.nature.com/naturematerials


Articles NaTure MaTerIals

the beams. At every gradient iteration, the coupling matrix is evaluated for a 
reference configuration and for small variations around this configuration. 
For systems containing three beams (the topological insulator and zero-
dispersion material), the configuration is represented by a vector of the form 
= θ θ θx w x w x ws ( , , , , , , , , )T

1 1 1 2 2 2 3 3 3 , where xi is the location of the ith beam, wi is 
the ith beam width and θi is the ith beam angle. Different numbers of beams can 
be accommodated by adding or removing components. The coupling matrix Vij

R is 
also expressed in vector form = V V V Vv ( , , , )T

11 21 12 22 . These definitions allow us to 
define a Jacobian matrix such as Δ Δ+ ≈ + Jv s s v s( )0 0  where the columns of J are 
calculated as = + −vJ s S v s( ) ( )i i0 0 , and S is a matrix where each column Si represents 
a perturbation in the configuration vector’s ith component. We use perturbations 
of 0.04 mm for the beam locations, 0.01 mm for the beam thickness and 2° for 
the beam angles. The coupling matrix vector v(s) is calculated using the coupling 
matrix extraction method described earlier.

The optimized state of the system after a gradient iteration is defined as 
α= + −−SJ JJ Ss s e k( )T T

1 0
1 , where e is the error vector e =​ v −​ vT, vT is the objective 

coupling matrix K expressed in vector form, α is a parameter controlling the 
gradient descent speed and k is a vector from the Jacobian’s kernel; that is, 

=J k (0 0 0 0)T. The value of α is set to 0.4 at the beginning of the optimization 
process and then increased to 1 when the modulus of the error vector e falls below 
5% of the modulus of the objective vector vT.

The kernel vector k does not affect the coupling matrix and is chosen to 
minimize participation of unwanted modes. We observe that the addition  
of k reduces these unwanted modes by 30 to 50%. We determine the direction  
of k by first defining a scalar value ε that quantifies the participation of unwanted 
modes. The vector k is then given by the projection of the gradient of ε into  
the kernel of J. The gradient of E is defined with respect to the changes in  
the geometry, so γ= ℘ ∇ Ek J SKern( ) , where ∇ = + −ϵE E s S s( ) ( ) ( )S i0 0 , and ℘ JKern( )  
is a projector into the kernel of J. The value of E is defined as 

= + + … +E E E En1
2

2
2 2 , where n is the number of coupled modes within 

our frequency range of interest, and = −E I P U( )i i
FEM  is defined as the 

distance between the ith coupled mode’s displacement profile in the test area 
= … … …x x x y y y z z zU ( , , , , , , , , , , )i

i i i i i i i i i TFEM
1 2 2,268 1 2 2,268 1 2 2,268  and its projection into 

free-plate modes within the range of frequencies of interest, implemented with 
the projector = −P A A A A( )T T1 , where A is a vector whose columns contain the 
sampled displacements of the free-plate modes in the frequency range of interest, 
following the same layout as Ui

FEM. The errors in the two coupled plates are reduced 
to a single number E by taking the r.m.s. value of the two errors. The norm of k is 
adjusted empirically between 0.5 and 2.

Finite-element simulations. Phononic Veselago lens. Our model Veselago lens 
consists of 100 ×​ 100 unit cells, each of them containing 141,000 elements. To solve 
this system, we follow a dynamic condensation approach51. We cut each unit cell 
halfway along the length of the beams and define a transfer matrix that relates the 
displacements and forces acting on the boundary DOFS at the connection points, 
using 117 DOFs for every connecting beam cross-section. We do this by first 
defining the unit-cell dynamic force-balance equation ω ω− + + =M ib M Vu u u F2 ,  
where M and V are the unit cell’s mass and stiffness matrices obtained from 
COMSOL, and = −b 33 s 2 is a damping parameter. We then introduce the dynamic 
stiffness matrix ω ω= − + +D M ib M V2  and decompose the set of nodal forces 

and displacements into sets associated with boundary (b) and interior (i) nodes. 
By prescribing zero force at the interior nodes, the interior displacements can 
be condensed as = − −D Du u( )i bi i

1
i b . As a result, we obtain a condensed matrix 

= − −D D D D D( )b i i bcon b b i
1

i . We solve this system of equations using the PARDISO 
solver included in the Intel Math Kernel Library, which can solve systems with 
multiple right-hand sides without repeating common steps such as the matrix 
factorization. Similarly, we define a conversion matrix

= − −









C D D

I
,i bi

1
i

which provides the values of the full displacement vector u as a function of the 
boundary DOF’s uB, u =​ Cub.

We then solve the force-balance problem for the full lens in terms of the 
boundary nodes. The force at each node is set to zero, except for those in the 
interface between x =​ 50 y =​ 31 and x =​ 50 y =​ 32, which are driven with unit 
strength. After solving for the displacements in each step, we calculate  
the r.m.s. amplitude of every unit cell by using the equation ∝. . .u ETr m s ,  
where ET is the total steady-state energy stored in a unit cell, calculated as 

ω= ∕ +† †E C M V Cu u(1 2) ( )T B
2

B where † denotes the Hermitian conjugate. Due to 
the size and sparsity of the resulting matrices, the full finite-element simulation of 
the Veselago lens utilizes a slightly reduced mesh resolution resulting in a shift of 
the local resonance frequency with respect to the discrete model, which has been 
obtained from a single-unit-cell simulation (see caption of Fig. 2f,g).

Zero-cg metamaterial and topological insulator. The zero-group-velocity 
metamaterial is simulated in COMSOL using a unit cell subject to Floquet 
boundary conditions at half the beam’s length, using 1.02 million elements per 
unit cell. For the topological insulator dispersion relation (Fig. 4c), we model 
four unit cells (3 ×​ 1 plates) stacked in a column in the finite dimension, such 
that the modelled system consists of 12 ×​ 1 plates coupled with beams. This 
simulation was performed using 901,000 elements. Fixed boundary conditions 
were applied on both ends of the beams of the finite dimension, and Floquet 
boundary conditions were applied in the other dimension. To determine the 
polarization of the edge modes around the crossing points, we calculate on 
which side of the model, in the finite dimension, the stored energy density 
is localized. The exact locations of the edge mode crossing points depend on 
which plate within the three-plate unit cell is connected to the fixed boundary. 
The finite-size topological insulator was simulated directly in COMSOL using 
2.6 million elements.

Code availability. The codes used to generate the plots are available from the 
corresponding author upon reasonable request.

Data availability. The data that support the plots are available from the 
corresponding author upon reasonable request.
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