dynamics and vibrations
ME 151b; winter 2017, 2018, 2019
AM/CE. 9 units (3-0-6); second terms. Equilibrium concepts, conservative and dissipative systems, Lagrange’s equations, differential equations of motion for discrete single and multi degree-of-freedom systems, natural frequencies and mode shapes of these systems (Eigen value problem associated with the governing equations), phase plane analysis of vibrating systems, forms of damping and energy dissipated in damped systems, response to simple force pulses, harmonic and earthquake excitation, response spectrum concepts, vibration isolation, seismic instruments, dynamics of continuous systems, Hamilton’s principle, axial vibration of rods and membranes, transverse vibration of strings, beams (Bernoulli-Euler and Timoshenko beam theory), and plates, traveling and standing wave solutions to motion of continuous systems, Rayleigh quotient and the Rayleigh-Ritz method to approximate natural frequencies and mode shapes of discrete and continuous systems, frequency domain solutions to dynamical systems, stability criteria for dynamical systems, and introduction to nonlinear systems and random vibration theory.
Special Topics in Solid Mechanics: Linear and nonlinear waves in periodic media
Ae/AM/ME 225. 9 units (3-0-6); second term. Prerequisite Ae/AM/ME 102abc or permission of the instructor.
The course will cover the basic principles of linear and nonlinear wave propagation in periodic media. It will introduce examples of periodic structural configurations at different length-scales and their relation to wave propagation. The course will cover the fundamental mathematical principles used to describe linear wave propagation and will describe the fundamentals of weakly nonlinear and highly nonlinear approaches. Selected recent scientific advancements in the dynamics of periodic media will also be discussed.
Mechanics of Nanomaterials
AE 244. 9 units (3-0-6); third term.
Basics of the mechanics of nanomaterials, including the physical and chemical synthesis/processing techniques for creating nanostructures and their relation with mechanical and other structural properties. Overview of the properties of various types of nanomaterials including nanostructured metals/ceramics/composites, nanowires, carbon nanotubes, quantum dots, nanopatterns, self-assembled colloidal crystals, magnetic nanomaterials, and biorelated nanomaterials. Innovative experimental methods and microstructural characterization developed for studying the mechanics at the nanoscale will be described. Recent advances in the application of nanomaterials in engineering systems and patent-related aspects of nanomaterials will also be covered. Open to undergraduates with instructor's permission.
Mechanics of Structures and Solids
Ae/AM/CE/ME 102 ab. 9 units (3-0-6); first, second, third terms. Prerequisite: ME 35 abc or equivalent.
Static and dynamic stress analysis. Two- and three-dimensional theory of stressed elastic solids. Analysis of structural elements with applications in a variety of fields. Variational theorems and approximate solutions, finite elements. A variety of special topics will be discussed in the third term such as, but not limited to, elastic stability, wave propagation, and introductory fracture mechanics.
Mechanics of Materials
ME65a. 9 units (3-0-6); first term. Prerequisites: ME 35 abc, Ma 2 ab.
Introduction to continuum mechanics, principles of elasticity, plane stress, plane strain, axisymmetric problems, stress concentrations, thin films, fracture mechanics, variational principles, frame structures, finite element methods, composites, and plasticity. Taught concurrently with Ae/AM/CE/ME 102.
Strength of Materials
ME 35c. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc.
Introduction to statics and dynamics of rigid and deformable bodies. Equilibrium of force systems, principle of virtual work, distributed force systems, friction, static analysis of rigid and deformable structures, kinematics, particle dynamics, rigid-body dynamics, dynamics of deformable systems, and vibrating systems.